» NOVOS 3 x RS485 Modbus

Room operating unit temperature, optional with humidity | CO2 | VOC

Datasheet

Subject to technical alteration Issue date: 05.08.2019 • A101

O CONTRACTOR

thermokor

HOME OF SENSOR TECHNOLOGY

With design cover (left), standard design w/o design cover (right)

» APPLICATION

Room operating unit with recording room temperature, optional with humidity, CO2 or VOC. The maintenance-free sensor creates the conditions for a pleasant indoor climate and well-being. Typical applications are schools, office buildings, hotels, cinemas or similar.

» TYPES AVAILABLE

Room operating unit temperature - active RS485 Modbus

»NOTES ON DISPOSAL

As a component of a large-scale fixed installation, Thermokon products are intended to be used permanently as part of a building or a structure at a pre-defined and dedicated location, hence the Waste Electrical and Electronic Act (WEEE) is not applicable. However, most of the products may contain valuable materials that should be recycled and not disposed of as domestic waste. Please note the relevant regulations for local disposal.

» SECURITY ADVICE - CAUTION

The installation and assembly of electrical equipment should only be performed by authorized personnel.

The product should only be used for the intended application. Unauthorised modifications are prohibited! The product must not be used in relation with any equipment that in case of a failure may threaten, directly or indirectly, human health or life or result in danger to human beings, animals or assets. Ensure all power is disconnected before installing. Do not connect to live/operating equipment.

Please comply with

- Local laws, health & safety regulations, technical standards and regulations
- Condition of the device at the time of installation, to ensure safe installation
- This data sheet and installation manual

» REMARKS TO ROOM SENSORS

Location and Accuracy of Room Sensors

The room sensor should be mounted in a suitable location for measuring accurate room temperature. The accuracy of the temperature measurement also depends directly on the temperature dynamics of the wall. It is important, that the back plate is completely flush to the wall so that the circulation of air occurs through the vents in the cover. Otherwise, deviations in temperature measurement will occur due to uncontrolled air circulation. Also the temperature sensor should not be covered by furniture or similar devices. Mounting next to doors (due to draught) or windows (due to colder outside wall) should be avoided. The temperature dynamics of the wall will influence the temperature measurement. Various wall types (brick, concrete, dividing and hollow brickwork) all have different behaviours with regards to thermal variations.

Surface and Flush Mounting

The temperature dynamics of the wall influence the measurement result of the sensor. Various wall types (brick, concrete, dividing and hollow brickwork) have different behaviours with regard to thermal variations. A solid concrete wall responds to thermal fluctuations within a room in a much slower way than a light-weight structure wall. Room temperature sensors installed in flush boxes have a longer response time to thermal variations. In extreme cases they detect the radiant heat of the wall even if the air temperature in the room is lower for example. The quicker the dynamics of the wall (temperature acceptance of the wall) or the longer the selected inquiry interval of the temperature sensor is the smaller the deviations limited in time are.

» BUILD-UP OF SELF-HEATING BY ELECTRICAL DISSIPATIVE POWER

Temperature sensors with electronic components always have a dissipative power, which affects the temperature measurement of the ambient air. The dissipation in active temperature sensors shows a linear increase with rising operating voltage. This dissipative power has to be considered when measuring temperature. In case of a fixed operating voltage $(\pm 0, 2 \text{ V})$ this is normally done by adding or reducing a constant offset value. As Thermokon transducers work with a variable operating voltage, only one operating voltage can be taken into consideration, for reasons of production engineering. Transducers 0.10 V / 4..20 mA have a standard setting at an operating voltage of 24 V =. That means, that at this voltage, the expected measuring error of the output signal will be the least. For other operating voltages, the offset error will be increased by a changing power loss of the sensor electronics. If a re-calibration should become necessary later directly on the sensor, this can be done by means of the NOVOSapp software and an optional Bluetooth interface. (additionally with sensors with BUS interface via an appropriate software variable).

Remark: Occurring draft leads to a better carrying-off of dissipative power at the sensor. Thus temporally limited fluctuations might occur upon temperature measurement.

» APPLICATION NOTICE FOR HUMIDITY SENSORS

Refrain from touching the sensitive humidity sensor/element. Touching the sensitive surface will void warranty.

For standard environmental conditions re-calibration is recommended once a year to maintain the specified accuracy.

When exposed to high ambient temperature and/or high levels of humidity or presence of aggressive gases (i.e. chlorine, ozone, ammonia) the sensor element may be affected and re-calibration may be required sooner than specified. Re-calibration and deterioration of the humidity sensor due to environmental conditions are not subject of the general warranty.

»INFORMATION ABOUT SELF-CALIBRATION FEATURE CO2

Virtually all gas sensors are subject to some sort of drift. The degree of drift is partially dependent on the use of quality components and good design. But even with good components and excellent design, a small amount of drift can still occur in the sensor that may ultimately result in the need for a sensor to be recalibrated. The natural drift of the sensor is caused by:

• Dust/dirt • Aggressive chemicals absorbed inside chamber / optical elements • Corrosion inside chamber (high rh, condensation) • Temperature cycles causing mechanical stress • Electron/hole migration in the photo detector's semiconductor • Drift of photo amplifiers • External mechanical stress on chamber • Light source wear-off

Most of the effects listed above will be compensated by the automatic self-calibration of the sensor's dual channel technology. In contrast to commonly used ABC-Logic self-calibrating sensors with dual channel technology are suitable for all applications including those operating 24

»INFORMATION ABOUT INDOOR AIR QUALITY CO2

EN 13779 defines several classes for indoor air quality:

Category	CO ₂ content above the content	in outdoor air in ppm	Description
	Typical range	Standard value	
IDA1	<400 ppm	350 ppm	Good indoor air quality
IDA2	400 600 ppm	500 ppm	Standard indoor air quality
IDA3	6001.000 ppm	800 ppm	Moderate indoor air quality
IDA4	>1.000 ppm	1.200 ppm	Poor indoor air quality

» APPLICATION NOTICE FOR AIR QUALITY SENSORS VOC

Unlike CO_2 sensors, which specifically measure CO_2 , mixed gas sensors detect a wide range of gases. The sensor signal does not indicate the type of gas or it's concentration in ppm. Mixed gas sensors detect gases and vapours consisting of carbohydrates, or more generally gases that can be oxidised (burnt): Odours, perfume, cleaning fluid scent, tobacco smoke, new materials fumigations (furniture, carpets, paint, glue ...).

Unlike CO₂, which humans cannot sense, the amount of odours (VOC) indicates the level of air quality. VOC sensors have proven their value in a multitude of applications for many years.

Measuring principle:

A heated tin dioxide semiconductor sensor burns (oxidizes) organic molecules that come into contact with it, thereby changing the resistance of the semiconductor. The change in resistance is characteristic for the type and concentration of the molecules. Gas mixtures such as air produce a mixed signal that can not be deduced from individual components. CO2 can not be detected because it can not be burned.

Refrain from touching the sensor's element sensitive surface. Touching the sensitive surface element will void warranty.

» INFORMATION ABOUT CALIBRATION VOC

Similar to a catalyst, the sensitivity of the sensor decreases over time. The VOC sensor compensates for this decrease in sensitivity through regular auto-calibration.

The measured values are recorded over a period of 24 hours. The lowest value within this period is used as the reference value ("new zero level") for clean, fresh air. Measured thereafter, lower readings result in an immediate adjustment of the reference value.

» CONFIGURATION

The Thermokon bluetooth dongle with micro-USB is required for communication between NOVOSapp and NOVOS products (Item No.: 668262). Commercial bluetooth dongles are not compatible.

Application-specific reconfiguration of the devices can be performed using the Thermokon NOVOSapp. The configuration performed in voltage-supplied state.

The configuration-app and the app description can be found in the Google Play Store or in the Apple App Store.

» PRODUCT TESTING AND CERTIFICATION

Declaration of conformity The declaration of conformity of the products can be found on our website https://www.thermokon.de/.

» TECHNICAL DATA

Measuring values	Temperature humidity CO2 VOC
Network technology	RS485 Modbus, RTU, half-duplex, baud rate 9.600, 19.200, 38.400 or 57600, parity: none (2 stopbits), even or odd (1 stopbit)
Power supply	1535 V = (or 1929 V ~)* SELV
Power consumption	typ. 0,4 W (24 V =) 0,8 VA (24 V ~)
Measuring range temperature	-20+70 °C
Accuracy temperature	±0,5K (typ. at 21 °C)
Inputs	1x input for floating input
Set point (P) (optional)	potentiometer
Button (T) (optional)	for presence detection, with LED (TD)
LED (D) (optional)	for status feedback, color can be set (from 7 colours) via Thermokon NOVOSapp (any from RGB) or BUS
Enclosure	PC V0, pure white, design cover (optional)
Protection	IP20 according to DIN EN 60529
Cable entry	rear entry, breaking points bottom, drill mark top
Connection electrical	tool-free mountable spring terminal, max. 1,5 mm ²
Ambient condition	-20+70 °C, max. 85% non-condensing, with CO2 sensor operating temperature range 0+50 °C
Mounting	surface mounted on flush-mounting box (\emptyset =60 mm) or to be mounted flat onto the surface using screws, base part can be mounted and wired separately

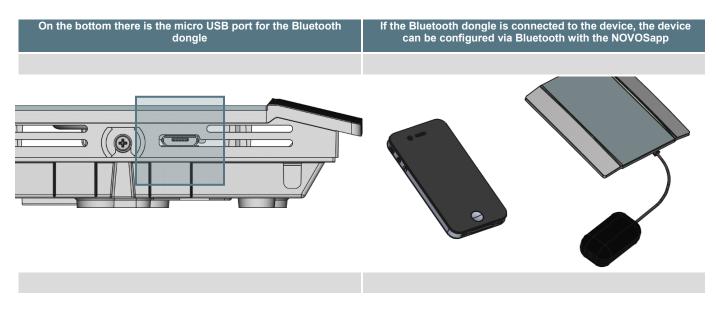
» Humidity (optional)

Measuring range humidity (optional configurable)	relative humidty (default) 0100% rH	Enthalpy 085 KJ/kg	absolute humidity 050 080 g/m³,	dew point 0+50 -20+80 °C,
	configurable via Thermo	kon NOVOSapp or BUS		
Accuracy humidity	±2% between 1090% rl	H (typ. at 21 °C)		

» CO2 (optional)

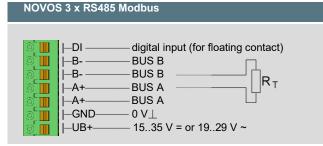
Measuring range CO2	02000 ppm 05000 ppm (configurable via Thermokon NOVOSapp or BUS)
Accuracy CO2	±50 ppm +3 % of reading (typ. at 21 °C, 50% rH, 1015 hPa)
Calibration	self-calibration dual channel
Sensor	NDIR (non-dispersive, infrared)
Display (optional)	RGB-LED indicating air quality (traffic light function 'TLF')

» VOC (optional)


Measuring range VOC	0100 %
Calibration	self-calibration
Sensor	VOC sensor (heated metal oxide semiconductor)

*Power supply

When several BUS devices are supplied by one 24 V AC voltage supply, it is to be ensured that all "positive" operating voltage input terminals (+) of the field devices are connected with each other and all "negative" operating voltage input terminals (-) (=reference potential) are connected together (in-phase connection of field devices).

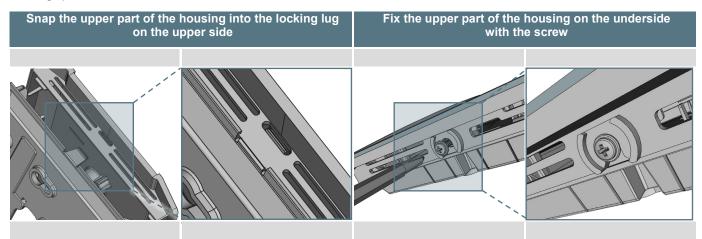

In case of reversed polarity at one field device, a supply voltage short-circuit would be caused by that device. The consequential short-circuit current flowing through this field my cause damage to it.

Therefore, pay attention to correct wiring.

» CONNECTION PLAN

Room sensor - active RS485 Modbus

Don't forget the BUS termination (120 Ω) at the last device of the line!


» MOUNTING ADVICES

Please make sure that the device is de-energized if you want to install it!

The installation can be performed on the flat wall surface or on a flush-mounted box. A representative place should be selected. Sunshine and draft, e.g. in the installation tube should be avoided, so that the measurement result is not falsified. Seal the end of the installation tube.

- For wiring, the upper part of the device must be removed from the base plate. Base plate and upper part are detachably connected to each other by means of locking lugs.
- The mounting of the base plate on the flat wall surface is done with rawplugs and screws.
- Finally, the device is attached to the base plate and fixed with the screw.

Housing open / close

Cable entry

There are predetermined breaking points for 2 optional cable entries on the underside of the base plate.
On the upper side of the base plate there are 2 grits as position for a drill hole max. Ø 6 mm

Image: Comparison of the upper side of the base plate there are 2 grits as position for a drill hole max. Ø 6 mm
Image: Comparison of the upper side of the base plate there are 2 grits as position for a drill hole max. Ø 6 mm

Image: Comparison of the upper side of the base plate there are 2 grits as position for a drill hole max. Ø 6 mm
Image: Comparison of the upper side of the base plate there are 2 grits as position for a drill hole max. Ø 6 mm

Image: Comparison of the upper side of the base plate there are 2 grits as position for a drill hole max. Ø 6 mm
Image: Comparison of the upper side of the base plate there are 2 grits as position for a drill hole max. Ø 6 mm

Image: Comparison of the upper side of the base plate there are 2 grits as position for a drill hole max. Ø 6 mm
Image: Comparison of the upper side of the base plate there are 2 grits as position for a drill hole max. Ø 6 mm

Image: Comparison of the upper side of the base plate there are 2 grits as position for a drill hole max.
Image: Comparison of the upper side of th

When using a drill, you should absolutely ensure that the base plate is firmly clamped. Before drilling, the pressure must be reduced and carefully drilled. A sudden break-through of the drill bit can be the result.

» **DIP-SWITCH-SETTINGS**

The modbus address of the device is set in the range of 1 ... 63 (binary encoded) using a 6-pole DIP switch. With address 0 via DIP, an extended address range (64..247) is available via NOVOSapp.

Modbus-Address - DIP 1..6 (binary coded)

Dip switch	1 = on	2 = on	3 = on	4 = on	5 = on	6 = on	
Value	2º (1)	2 ¹ (2)	2 ² (4)	2 ³ (8)	2 ⁴ (16)	25 (32)	_

factory default, address 63

Baud rate - DIP 7 & 8

7	8	Baud rate
off	off	9600
on	off	19200
off	on	38400
on	on	57600 (factory default)

Parity / Stop bits - DIP 9 & 10

ON	J							
ы								
1	2	3	4	5	6	7	8	9 10

9	10	Parity
off	off	None – 2-Stop bits
on	off	Even – 1 Stopbit
off	on	Odd – 1 Stop bit
on	on	None – 1-Stop bit (factory default)

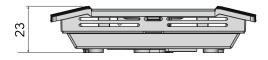
Address	Access	Description		
100	R/W	Button pressed = 1 Not pressed = 0		
426	R/W	LED ON/OFF ON = 1 OFF = 0 (default)		
427	R/W	LED color transparent = 0 white = 1 black = 2 red = 3 green = 4 (default) blue = 5 yello turquoise= 8	w = 6 mager	nta = 7
501	R	relative humidity 850 = 85,0 %rH	0.1	%rH
505	R	CO2	1.0	ppm
506	R	VOC	0.1	%
507	R	CO2 / VOC MIX		
514	R	Status digital input open = 0 closed = 1		

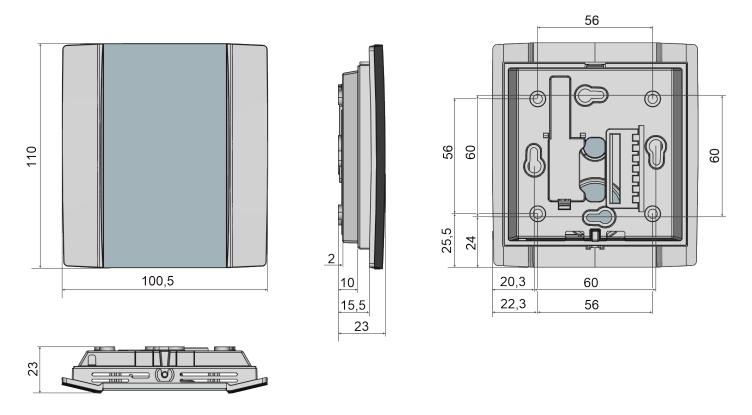
Register 1100 = 1 (Unit SI)

Address	Access	Description	Resolution /Unit		
103	R	Setpoint 210 = 21,0 ℃	SI	0.1	°C
500	R	Temperature 210 = 21,0 °C	SI	0.1	°C
502	R	Absolute humidity 1500 = 15,00 g/m³	SI	0.01	g/m³
503	R	Enthalpy 550 = 55,0 kJ/m³	SI	0.1	kJ/kg
504	R	Dew point 180 = 18,0 °C	SI	0.1	°C
1302	R/W	Base set point 210 = 21,0 °C (default)	SI	0.1	°C
1303	R/W	Set point adjustment range 30 = 3,0 °C (default)	SI	0.1	°C
1304	R/W	Setpoint step width 5 = 0,5 °C (default)	SI	0.1	°C

Register 1100 = 2 (Unit Imperial)

Address	Access	Description	Resolution / I	Resolution / Unit		
103	R	Set point 700 = 70.0 °F	Imperial	0.1	°F	
500	R	Temperature 700 = 70,0 °F	Imperial	0.1	°F	
502	R	absolute humidity 4200 = 4,2 gr/ft ³	Imperial	0.01	gr/ft³	
503	R	Enthalpy 240 = 24,0 BTU/lb	Imperial	0.1	BTU/lb	
504	R	dew point 600 = 60,0 °F	Imperial	0.1	°F	
1302	R/W	Base setpoint 700 = 70.0 °F (default)	Imperial	0.1	°F	
1303	R/W	Setpoint-adjustment range 50 = 5.0 °F (default)	Imperial	0.1	°F	
1304	R/W	Setpoint step width 10 = 1.0 °F (default)	Imperial	0.1	°F	


Modbus addresses:


NOVOS-RS485 Modbus Interface

A detailed description of the Modbus addresses can be found under the following link:

→ <u>Download</u>

» DIMENSIONS (MM)

» ACCESSORIES (OPTIONAL)

Rawlplugs and screws (2 pcs. each) Frame for surface mounting NOVOS 3 Bluetooth dongle PSU-UP24 – flush mount power supply 24 V (AC Input: 100..240 V ~ | DC Output 24 V = 0,5 A) Item No. 102209 Item No. 634472 Item No. 668262 Item No. 645737